
Appendix

Equations and Parameters for Model Simulations

Ca2+ Subspace Model
As in Zhang et al., Biophys. J. 84(5):2852–2870, Fig. 10, except as noted.

(To be posted online but not included in paper.)

Units:
Conductances pS
Currents fA
Ca concentrations µM
Time ms
Capacitance fF

Differential Equations (deterministic):

Cm
dv

dt
= −ICa − IKv − IKATP − IKCa − ILeak (1)

dn

dt
=

n∞(v)− n

τn

(2)

dc

dt
= fCYT (−αICa − JPMCA − JSERCA + JX) (3)

dcER

dt
= fER

(
VCYT

VER

JSERCA − JRELEASE

)
(4)

dcSS

dt
= fSS

(
VER

VSS

JRELEASE − VCYT

VSS

JX

)
(5)

Initial Conditions:
V −21.366
n 0.14168
c 0.0516
cER 193.02
cSS 0.1851
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Ionic Currents:

ICa = gCam∞(v)(v − vCa) (6)

IKCa = gKCaω(v − vK) (7)

IKATP = gKATP(v − vK) (8)

IKv = gKn(v − vK) (9)

ILeak = gLeak(v − vLeak) (10)

where:

n∞(v) =
1

1 + exp((vn − v)/sn)
(11)

m∞(v) =
1

1 + exp((vm − v)/sm)
(12)

ω(cSS) =
cq
SS

cq
SS + Kq

d

(13)

Parameters:

for IKv:
gKv 2500
vK −70
vn −15
sn 5.6
τn 10.8

for ICa:
gCa 1450
vCa 30
vm -13
sm 8
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for IKCa:
gKCa 1200
Kd 0.7
q 8

for ILeak:
gLeak 14
vLeak −30

for IKATP:
gKATP 60

Calcium fluxes: (µM ms−1)

JPMCA = kPMCA c (14)

JSERCA = kSERCA c (15)

JRELEASE = pER (cER − cSS) (16)

JX = pX (cSS − c) (17)

with rates: (ms−1)
pX 0.025
pER 0.001
kPMCA 0.2
kSERCA 0.2
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and buffer parameters∗:
fCYT 0.01
fER 0.005
fSS 0.04

∗(dimensionless fraction of calcium that is free in each compartment)

Volume ratios:

VER

VSS

= 0.1 (18)

VCYT

VSS

= 2.5 (19)

VCYT

VER

= 25.0 (20)

VSS

VCYT

= 0.4 (21)

Miscellaneous:

Unit Conversion for ICa (converts fA to µM ms−1 ):

α =
1

2FVCYT

= 4.5× 10−6µM fA−1 ms−1

Here 2 is the valence of calcium; F is Faraday’s constant; and VCYT is the
volume of the cytosol.
Capacitance: Cm = 5300

Output function to report the free cytosolic Ca2+ that would be reported by
fura imaging:

cAVG =
VSScSS + VCYTc

VSS + VCYT
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Noise:

For simulations including channel noise, IKATP is redefined as

IKATP = ḡKATPs(V − VK)

where s satisfies the stochastic differential equation (SDE; (Kloeden, Platen,
and Schurz, 1997):

ds = [α(1− s)− βs]dt + σdW.

The magnitude of the noise term is

σ = {[α(1− s) + βs] / [τNKATP]}1/2 ,

with parameters α = 1 msec−1, τ = 100 msec, NKATP = 500, and β chosen
such that the deterministic steady state,

α

α + β
= 0.20.

Combined with gKATP = 300 pS, this makes the mean value of gKATP = 60
pS, as stated in the table for IKATP above. This makes the single-channel
conductance much smaller than it is in reality, suggesting that the model is
overly sensitive to gKATP. Nonetheless, this is a convenient locus for illus-
trating the effects of noise.

Multi-Cell (Islet) Simulations:

All equations and parameters above are the same as used in Zhang et al, Fig.
10, except that dynamic clamp current was not applied. In addition, some
simulations in the present paper involved many coupled cells to represent an
intact islet. Cells were indexed by i and arranged in a 10× 10× 10 cube. A
coupling term was added to the V equation as follows:

Cm
dvi

dt
= −ICa(vi)− IKv(vi, ni)− IKATP(vi, si)− IKCa(vi, ci)− ILeak(vi)

−gc

∑

j∈Ω

(vi − vj) (22)
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where Ω is the set of neighbors, which consists of 3 – 6 cells depending on
whether the cell i is a corner, edge, face, or interior cell. Coupling con-
ductance gc = 800 pS per connection (total coupling conductance for a cell
ranged from 2400 – 4800 pS). Note that each cell had an independent chan-
nel noise variable, si. Initial conditions were randomized by a uniformly
distributed 10% perturbation to avoid artifactual synchronization and the
first 300 seconds of simulation time were discarded to eliminate transients.

Heterogeneity

Heterogeneity is introduced by randomly distributing gCa around its mean
value of 1450 pS. A normal distribution with variance 10 pS was used for
Fig. 2 (“Synchrony Model”). This value was suitable for desynchronizing
the individual cells when uncoupled from the islet while preserving their
ability to exhibit medium to slow bursting. For Fig. 3 (“Channel Sharing
Model”), the variance was 20 pS. With this value the model could represent
most of the range of single cell behaviors observed experimentally in our
previous studies (Kinard et al, 1999; Zhang et al, 2003), in which more than
90% of the cells were spikers or fast bursters.

Methods
The stochastic equations were integrated by the Euler-Maruyama method:

sn+1 = sn + ∆t(α(1− sn)− βsn) + σn∆Wn (23)

where {∆Wn} is a set of independent random variables distributed as N(0, ∆t).
Normal random variables were generated using the program drnor.f, avail-
able as module DRNOR from the Guide to Available Mathematical Software
(http://gams.nist.gov).
The time step was 0.1 msec which was deemed to be adequate based on
comparison with higher order, variable time-step methods applied to the
deterministic case. In addition, values of ∆Wn that caused sn+1 to go outside
the interval [0, 1] were discarded and a new random variable chosen until the
interval constraint was satisfied. See Fox, 1997.
Programs were written in fortran and compiled using the GNU g77 compiler
under Red Hat Linux 7.3. Xpp files giving equivalent results for the single-cell
cases are posted at: http://mrb.niddk.nih.gov/sherman.
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